31 research outputs found

    A Plausible Role for the Presence of Internal Shine-Dalgarno Sites

    Get PDF
    The presence of nucleotide hybridization between the 3′ end of 16S rRNA and mRNA sequence upstream of the start codon is well known in bacteria. In this paper, we detect the presence of such hybridization sites inside the coding regions of E. coli genes, and analyze their proximity to clusters of slow-translating codons. We study this phenomenon in genes of high and low expression separately. Based on our findings, we propose an explanation for the presence of RNA hybridization within the translated regions of bacterial genes

    Multipattern Consensus Regions in Multiple Aligned Protein Sequences and Their Segmentation

    Get PDF
    <p/> <p>Decomposing a biological sequence into its functional regions is an important prerequisite to understand the molecule. Using the multiple alignments of the sequences, we evaluate a segmentation based on the type of statistical variation pattern from each of the aligned sites. To describe such a more general pattern, we introduce multipattern consensus regions as segmented regions based on conserved as well as interdependent patterns. Thus the proposed consensus region considers patterns that are statistically significant and extends a local neighborhood. To show its relevance in protein sequence analysis, a cancer suppressor gene called p53 is examined. The results show significant associations between the detected regions and tendency of mutations, location on the 3D structure, and cancer hereditable factors that can be inferred from human twin studies.</p

    Analysis of Free Energy Signals Arising from Nucleotide Hybridization Between rRNA and mRNA Sequences during Translation in Eubacteria

    Get PDF
    A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, 3′-terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species (G + C) content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase

    Analysis of Ultra Low Genome Conservation in Clostridium difficile

    Get PDF
    Microarray-based comparative genome hybridisations (CGH) and genome sequencing of Clostridium difficile isolates have shown that the genomes of this species are highly variable. To further characterize their genome variation, we employed integration of data from CGH, genome sequencing and putative cellular pathways. Transcontinental strain comparison using CGH data confirmed the emergence of a human-specific hypervirulent cluster. However, there was no correlation between total toxin production and hypervirulent phenotype, indicating the possibility of involvement of additional factors towards hypervirulence. Calculation of C. difficile core and pan genome size using CGH and sequence data estimated that the core genome is composed of 947 to 1,033 genes and a pan genome comprised of 9,640 genes. The reconstruction, annotation and analysis of cellular pathways revealed highly conserved pathways despite large genome variation. However, few pathways such as tetrahydrofolate biosynthesis were found to be variable and could be contributing to adaptation towards virulence such as antibiotic resistance

    Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs

    Get PDF
    BACKGROUND: Identification of specific genes and gene expression patterns important for bacterial survival, transmission and pathogenesis is critically needed to enable development of more effective pathogen control strategies. The stationary phase stress response transcriptome, including many σ(B)-dependent genes, was defined for the human bacterial pathogen Listeria monocytogenes using RNA sequencing (RNA-Seq) with the Illumina Genome Analyzer. Specifically, bacterial transcriptomes were compared between stationary phase cells of L. monocytogenes 10403S and an otherwise isogenic ΔsigB mutant, which does not express the alternative σ factor σ(B), a major regulator of genes contributing to stress response, including stresses encountered upon entry into stationary phase. RESULTS: Overall, 83% of all L. monocytogenes genes were transcribed in stationary phase cells; 42% of currently annotated L. monocytogenes genes showed medium to high transcript levels under these conditions. A total of 96 genes had significantly higher transcript levels in 10403S than in ΔsigB, indicating σ(B)-dependent transcription of these genes. RNA-Seq analyses indicate that a total of 67 noncoding RNA molecules (ncRNAs) are transcribed in stationary phase L. monocytogenes, including 7 previously unrecognized putative ncRNAs. Application of a dynamically trained Hidden Markov Model, in combination with RNA-Seq data, identified 65 putative σ(B )promoters upstream of 82 of the 96 σ(B)-dependent genes and upstream of the one σ(B)-dependent ncRNA. The RNA-Seq data also enabled annotation of putative operons as well as visualization of 5'- and 3'-UTR regions. CONCLUSIONS: The results from these studies provide powerful evidence that RNA-Seq data combined with appropriate bioinformatics tools allow quantitative characterization of prokaryotic transcriptomes, thus providing exciting new strategies for exploring transcriptional regulatory networks in bacteria. See minireivew http://jbiol.com/content/8/12/107

    Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two strains of the silver fox (<it>Vulpes vulpes</it>), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed.</p> <p>Results</p> <p>cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome.</p> <p>Conclusions</p> <p>Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.</p
    corecore